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Abstract 
 
The affordance of independent learning is one of the most impor-
tant advantages of computer simulators for surgical training. This 
advantage can get dull if the simulator does not provide the useful 
instructional feedback to the user and the instructor has to super-
vise and tutor the trainee while using the simulator. In fact the 
continued need of instructor feedback with most existing simula-
tors is often cited as a primary reason for the reluctance of many 
medical schools to fully embrace simulator technology [Sewell 
2007]. Thus the incorporation of relevant, intuitive metrics in a 
way that it provides a constructive feedback which facilitates 
independent learning is essential for the development of efficient 
simulators. Evaluating a trainee surgeon’s performance as per 
trainer surgeon’s desire is always a challenging problem in the 
development of minimal invasive surgery simulators. In this re-
search we have proposed a novel metric for trainee surgeons’ 
performance evaluation using machine learning algorithms. 
 
Keywords: Virtual Reality, Performance Evaluation, Surgical 
Simulation, Machine Learning, Artificial Intelligence 
 
1. Introduction 
 
Virtual reality training simulators are used in different fields such 
as aviation, vehicle driving and medical disciplines such as anes-
thetics, surgery, and procedure-based medicine. 
 
The advent of medical simulators started a new era for surgical 
education. Now technical skills are no longer learned in the Oper-
ation Room (OR) through a traditional apprenticeship model of 
training. Instead, the acquisition of new skills and development of 
basic surgical proficiency are moving to a simulated environment 
in the surgical skills laboratory. Basic surgical tasks and some 
advanced surgical techniques can be replicated in the skills virtual 
laboratory, allowing both trainees and practicing surgeons to gain 
proficiency in these skills [Montbrun and MacRae 2013]. 
 
Laparoscopic surgery (LS), a widely established procedure in 
Minimally Invasive Surgery (MIS) is being used nowadays for an 
increasing number of surgical interventions. Compared to open 
surgery, LS has multiple important benefits for the patients such 
as faster healing, shorter hospitals stays, and minimized risk of 

infection. However, there are a number of inherent particularities 
in the application of MIS techniques, such as visual projection of 
the 3D space onto a 2D display, restricted mobility, reduced force 
feedback, and the fulcrum effect. As a consequence, the technical 
skills required for laparoscopic surgery are different from those 
required for traditional open surgery. Adjustment of the hand-eye 
coordination by interpreting the three dimensional image from a 
two dimensional image along with overcoming the fulcrum effect 
are some of the skills specific to minimally invasive surgery [Nu-
gent et al. 2013]. Moreover, a laparoscopic surgeon needs to have 
very good depth perception and advanced psychomotor skills 
(such as grasping, tracking and suturing), using long and thin 
surgical instruments inserted in the abdominal cavity via small 
incisions. 
 
Complications can occur even when experienced surgeons who 
are well versed in open techniques and have a good knowledge of 
anatomy and pitfalls embrace new techniques. This fact heigh-
tened the concerns about the training of novices who lacked such 
a background in open surgery [Gallagher 2012]. Hence simulators 
are increasingly being recognized as a valuable tool for training. 
This is particularly true for the early part of the learning curve in 
laparoscopy and other minimally invasive surgical techniques. 
 
In recent years virtual reality (VR) technology based surgical skill 
assessment has received major attention. It allows surgical trai-
nees to acquire the essential skills required to perform a laparos-
copic operation. VR simulators provide a secure educational para-
digm where errors do not risk patients’ safety and these systems 
are also able to provide constructive feedback about the trainees' 
performances. Moreover, VR simulators encompass a wide range 
of training tasks with different levels of difficulty, as well as sce-
narios of entire operations such as laparoscopic cholecystectomy. 
In addition to surgical skills training, VR simulators allow for 
skills assessment [Megali et al. 2006]. 
 
One of the most important functions of a simulation is to facilitate 
the effective and efficient training of skill outside the clinical 
situation thus minimizing the risk to the patient from at least part 
of the novice’s learning curve. But what is skill? Failure by medi-
cine to explicitly answer this question has been one of the major 
impediments to the development of good simulations and simula-
tion-based training. 
 
A simulator without performance evaluation is as good as an ex-
pensive video game. The main objective of evaluation metrics is 
to provide objective and immediate feedback to a trainee on his 
performance. This allows trainer to provide formative feedback to 
aid trainee in acquiring skill. All available Virtual Reality (VR) 
surgical simulators use execution time as a metric. Unfortunately 
time analyzed is at best crude and at worst a dangerous metric 
[Gallagher et al. 2012]. 
 
However, it is also vital to ensure that the tools used for both 
training and assessment actually measure what they purport to 
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measure. It is necessary to demonstrate that the simulator modules 
have construct validity and that the training program results in a 
training benefit. 
 
A high level of psychomotor skills is required to perform mini-
mally invasive surgery (MIS) safely. To assure high quality of 
skills, it is important to be able to measure and assess these skills. 
For that, it is necessary to determine aspects that indicate the dif-
ference between performances at various levels of proficiency. 
Measurement and assessment of skills in MIS can best be done in 
an automatic and objective way. 
 
The study in [Hofstad et al. 2012] investigates a set of nine mo-
tion-related metrics for their relevance to assess psychomotor 
skills in MIS during the performance of a labyrinth task. They 
used time, bimanual dexterity, path length, angular length, depth 
perception, response orientation, motion smoothness, number of 
sub-movements and average velocity as evaluation metrics. They 
found significant difference in the performance of three groups of 
users with different set of experiences in the field of laparoscopic 
surgery which showed the difference in their proficiency levels. 
 
As compared to simple metrics like time and number of errors, 
motion tracking has been suggested to be a more sensitive per-
formance metric for the assessment of surgical performance [Ste-
fanidis et al. 2013]. 
 
Over the last few years, surgical skill evaluation has attracted the 
interest of various scientific groups due to the great demand for 
shifting from subjective scoring to a more objective and quantita-
tive analysis that can provide important insight into the trainee’s 
qualities. Experience discrimination by analyzing hand motion 
has received special attention in the last few years [Loukas et al. 
2013]. Another way of assessment is analyzing the motion of the 
instrument with a path planning approach. 
 
Usually the evaluation of surgical skills is based on the applica-
tion of Hidden Markov Models (HMMs) and Support Vector Ma-
chines (SVM) for reasons such as task decomposition and recog-
nition of surgical expertise. Surgical dexterity has been evaluated 
by applying HMMs. It is done by considering a hand motion sig-
nal as a stochastic process composed of state sequence that usual-
ly relates to a user-defined set of primitive movements [Megali et 
al. 2006]. In discussions with different groups of physicians and 
surgeons from around the world there appears to be a consensus 
that reaching an agreement on performance metrics is all but im-
possible [Gallagher and O’Sullivan 2012]. Rather than ben-
chmarking on some abstract performance level reached by con-
sensus in a committee, the training pass level is defined based on 
the performance levels of individuals who are actually very expe-
rienced at performing the procedure clinically. 
 
Defining an optimal surgical performance is the real difficulty. So 
the key is to model the expert surgeons’ skills which will help in 
assessing the skill of a novice surgeon [Megali et al. 2006]. 
 
In this study, we investigate the role of instruments’ motion con-
nectivity in the performance of a laparoscopic VR simulator. Two 
groups were considered: experienced surgeons and beginners. The 
connectivity pattern of each subject was evaluated by analyzing 
their instruments’ motion signals. 
 

2. Previous Work 
 
The existing performance metrics for surgical simulations can be 
broadly classified into two types; the first type includes metrics 

that are common to all of the exercises where as the second cate-
gory encompasses exercise specific metrics. The first type of me-
trics depicts the efficiency and ease of a trainee while handling 
MIS instruments and the level of trainee’s hand eye coordination. 
The second type indicates the accuracy of the trainee while per-
forming a certain task. These second type metrics measure how 
accurately the trainee has achieved a certain goal. Though they 
might not be the true indicators of the efficiency of a user’s per-
formance of a surgical exercise yet they certainly demonstrate the 
accuracy of the trainee for that particular exercise. 
 
In [Hofstad et al. 2012] the authors have used orientation, 
smoothness, perception, velocity and time as metrics to measure 
the performance of a surgeon in order to differentiate between an 
expert and novice surgeon. They have further used them for map-
ping a learning curve of a novice surgeon. Other than measuring 
how good a novice surgeon is learning, these parameters have also 
been used for online performance evaluation,  like it was used for 
pattern cutting exercise of a glove by [Pellen et al. 2009]. Other 
than basic skills training these generic metrics have also been 
applied to assess advanced skills like those involved in cholecys-
tectomy [Aggarwal et al. 2009]. 
 
In MIS simulators, application of machine learning for the pur-
pose of performance evaluation of a user is not very common. 
Rather evaluation is generally based on the surface area, time and 
path length [Bajka et al. 2010]. In [Loukas et al. 2013] the authors 
have used multivariate auto aggressive models to find a connec-
tivity pattern to make an expert benchmark so that novice surge-
ons can be evaluated in comparison with the expert score. Four 
parameters; values, covariance, number of nonzero multivariate 
autoregressive (MAR) coefficients, and area under the coherence 
spectra were extracted to compare a hand motion analysis of sur-
gical groups with different levels of experience. 
 
In [Megali et al. 2006] Hidden Markov Model (HMM) was ap-
plied to define a model of expertise and objective model to eva-
luate the performance of novice surgeons during laparoscopic 
surgical simulator training. The kinematic data describing the 
movements of surgical instruments was processed and HMM was 
used to define an expert model that describes expert surgical ges-
ture. Subsequently, this expert model was used as a reference in 
the definition of an objective metric for performance evaluation of 
someone with different ability. 
 
Though uncommon, usage of machine learning techniques for 
performance evaluation in a surgical simulator is not unique. B. 
Allen et al. [Allen et al. 2010] have used support vector machines 
in three exercises of peg transfer, pass rope and cap needle for 
classifying the expert surgeons and novices’ performance. 
 
Considering the unavailability of an optimal path for a surgical 
procedure, basis of our metric is to train the trainee surgeons as 
per expert surgeons’ desire. So keeping that in mind we took ex-
pert trainer surgeons’ instrument paths (in a specific type of simu-
lation exercise) as the optimal paths. A machine learning algo-
rithm named as Artificial Neural Network (ANN) was trained on 
them. Afterwards the new trainee surgeon’s performance was 
judged on how good he followed the expert trainer surgeons’ 
paths. The amount of deviation from the expert trainer surgeons’ 
paths was penalized by calculating the Euclidian distance in be-
tween desired/expected location and trainee surgeon’s instrument 
location. 
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Artificial neural network (ANN) is a widely used machine learn-
ing technique. One of its many applications is path planning. It 
has a great ability to learn non linear paths. 
 
The power of our technique is that instead of finding an optimal 
path in between multiple expert surgeons’ path, it tries to learn all 
of them except on those rare points where they intersect each 
other. 
 
3. Methods & Technique 
 
We used a machine learning technique which is commonly ap-
plied in path planning of mobile robots. First we discretized the 
virtual space into Cartesian coordinates. Then each location of the 
instrument at a certain time was taken as a new instance and its 
next location as the resultant instance. Then we saved these two 
locations as pairs in a log file. Then we applied some pre-
processing on these pairs of the current and subsequent locations. 
An ANN was then trained for the paths followed by the expert 
surgeons’ instrument while performing the virtual exercises. A 
typical node graph of ANN is shown in Figure 1 where each node 
represents an artificial neuron and arrows represent connections 
between these neurons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Depiction of an Artificial Neural Network (ANN). 
 
While evaluating a trainee surgeon, we fed the instrument’s loca-
tion coordinates of trainee surgeon into our trained ANN. The 
ANN as trained resulted into a forecasted location which our in-
strument should have reached. Euclidian distance between the 
ANN’s forecasted location coordinates and the actual subsequent 
location coordinates of the trainee’s instrument was considered as 
a penalty for deviating from the expert surgeon path. 
 
In following subsections, we have first explained the maintenance 
of the instruments’ path log followed by the incorporation of the 
time invariance, training & forecasting method, penalization me-
thod and score standardization. 
 
3.1 Surgeons’ Instruments Path Logs 
 
Initially we asked expert trainer surgeons to perform some surgic-
al simulation exercises. Their instruments’ locations were saved in 
a log to maintain a record of the paths followed by the expert 
trainer surgeons. In these logs instruments’ locations were record-
ed with a fixed time period of 0.05 seconds. We logged the trainee 
surgeons’ instruments’ paths in a similar way. As we discretized 
the virtual space in Cartesian coordinates, location of the instru-
ments was in the form of three values, i.e. horizontal (x), vertical 
(y), and depth (z). 
 

3.2 Time Invariance 
 
As mentioned in Section 2, time is widely used in the simulators 
as a metric for speed. So in an effort to emphasize more on the 
better following of the path we made speed irrelevant in our new 
metrics. 
 
The path logs recorded the location of the instrument after every 
0.05 seconds time. To make the path logs time invariant we de-
leted all of the location coordinates which were consecutively 
repeating themselves. This time invariance was incorporated in 
both trainee and trainer surgeons’ path logs. 
 
3.3 Training 
 
We used one of the supervised learning methods named as Elman 
network method of Artificial Neural Network (ANN) for learning 
multiple expert surgeons’ path. We provided labeled training data 
to this supervised way of machine learning. The training examples 
were in the form of pairs of an input object and desired output 
object. 
 
The input and output objects were both vectors with three mem-
bers each. Each location of the expert trainer surgeons’ instru-
ments’ time invariant path was taken as a separate training exam-
ple’s input vector and its subsequent location coordinates as out-
put vector. So ANN was trained on each location except the last 
one. 
 

3.4 Results and Penalties 
 
To evaluate the trainee surgeon’s performance, instruments’ loca-
tion coordinates from his time invariant path log were given as an 
input vector object to the trained network. The trained network 
gave a three member output vector object. The output vector con-
tains the forecasted location coordinates which it expects the trai-
nee surgeon to take his instrument to. 
 
Once the output vector object was retrieved, the Euclidian-
distance between the instruments’ forecasted and the original 
location coordinates was calculated. After calculating the devia-
tion for each move, absolute mean of the deviation was taken as 
the penalty for deviation from the benchmarked path. The bigger 
the penalty a user had the more he/she had deviated from the path. 
This whole process is illustrated with an example in Figure 2. 
 
3.5 Score Standardization 
 
The core of this concept is the mimicking of the expert surgeon’s 
evaluation. A comparison on how good our algorithm’s evaluation 
has mimicked the expert surgeons’ evaluation will exhibit the 
success of our efforts since the goal is to benchmark the expert 
surgeons’ performances. In order to compare the performance of 
our algorithm’s marking scheme in comparison to the expert 
surgeons’ marking we standardized these two different types of 
evaluation schemes. For this standardization we calculated the z-
score for each individual. In following we have explained how the 
standardization was calculated. 
 
Let PXj represent a metric with trainee surgeon’s number j= {1, 2, 
3, 4, 5} and group title X= {AS,SS} where “AS” represents algo-
rithm’s score where as “SS” represents the expert surgeon’s score. 
The score z corresponding to metric P for a user j is then given by: 
 

   (1) 
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Figure 2: Use of an expert surgeon’s path as a benchmark for 
evaluating a trainee’s performance. 
 

Where is the mean of parameter P of all the users and σ is the 

corresponding standard deviation. Using independent z-scores we 

can then calculate a standardized z-score for each user using  

  (2) 

Raw values of both algorithms’ evaluated results for two different 
surgical training exercises are shown in Table 1 and 3. Their stan-
dardized values are shown in Table 2 and 4 respectively. 
 
 

4. Results 
 
We used Simulation Open Framework Architecture (SOFA) [Al-
lard et al. 2007] to build the laparoscopic surgical simulation 
training exercises of Peg transfer and Grasping. 
 
During the Grasping exercise shown in Figure 3, a user has to 
iteratively grasp a peg and place it in a basket without touching 
the floor and the other instrument, where as the location of the 
basket and the peg keeps on changing in a random order during 
the course of an exercise.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Grasping exercise. 
 
During the Peg transfer exercise shown in Figure 4 a user has to 
pick four disks placed at one side of the box and place them on 
the respective peg stands at the other side of the box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4: Peg transfer exercise. 
 
Along with SOFA we used Matlab® to implement machine learn-
ing algorithms. We used the custom designed and indigenously 
manufactured hand manipulator named as Al-Zahrawi™ for these 
two exercises. The hand manipulators are shown in Figure 5. 
 
Our algorithm was applied in one of the periodically held work-
shops of Laparoscopic Surgical training in Holy Family Hospital, 
Rawalpindi, Pakistan in the month of April, 2013. During that 
workshop we requested four expert surgeons to perform the peg 
transfer and grasping exercise multiple times. Meanwhile we 
maintained the log of their instruments’ paths. An ANN was 
trained on these paths using the Elman method as described in C 
part of the Section III. Learning rate for the training was 0.05 with 
tolerance rate of 0.001. After training, the trained network vali-
dated the learning with an error of 0.08 average Euclidean dis-
tances (approximately 0.046 mm) for grasping exercise and 0.12 
average Euclidian distances (approximately 0.07 mm) for peg 
transfer exercise. The error is quite low and tolerable. 
 
After wards two of the expert surgeons manually examined, in-
structed and evaluated the trainees. All of the novice surgeons 
were asked to practice on the simulator for few times before re-
cording their logs so that they may get used to the simulator. Af-
terwards their performance was evaluated by our metric in com-
parison to benchmarked expert surgeons’ path. Meanwhile the 
expert surgeons evaluated the novice surgeon’s performance and 
 

 
Figure 5: Al Zahrawi™ Hand Manipulators. 
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marked them in between 1-10 where 1 being the best and 10 being 
the worst. Since our algorithm’s rating is penalty-based whereas 
surgeons gave their marks out of 10, both the scores were later 
standardized to give a fair comparison. Once the novice surgeons 
felt comfortable with the use of our simulator, each of them was 
asked to complete the exercise once for which his/her scores were 
calculated. 
 
The raw and standardized scores for 4 novice surgeons who per-
formed peg transfer exercise are shown in Table 1 and Table 2 
respectively. The standardized scores were calculated based on 
Score standardization method described earlier. The left hand 
column of each table shows the rating of trainees as given by the 
expert surgeons. The right hand column shows the scores given to 
the trainees calculated using our method. The standardized values 
in Table 2 have been plotted in Figure 6 for comparison between 
our algorithm’s score and expert surgeon’s marking. As can be 
seen from the figure, our algorithm’s performance for Peg Trans-
fer Exercise was quite encouraging. The average of the difference 
between standardized score marked by our algorithm and the ex-
pert surgeon was found to be only 1 percent. 
 
Table 3 and Table 4 show the raw and standardized scores for 5 
trainees respectively, who performed the grasping exercise. Like 
in case of peg transfer, the standardized scores based on both 
expert surgeons’ markings and our algorithm have been plotted 
which are shown in Figure 7. From the figure, it is quite obvious 
that our algorithm’s performance was not very encouraging for 
the grasping exercise. There was a one clear shoot out (hig-
hlighted in green in Tables 3 and 4 and in Figure 7) while evaluat-
ing one trainee’s performance, but other than that the average of 
the difference between standardized score marked by our algo-
rithm and the expert surgeon was 21 percent (without the one 
abnormal shoot out). One of the reasons behind this difference is 
the lack of training for this exercise because as mentioned before 
during grasping exercise the target object do not always appear at 
a fixed location rather it iteratively changes its reappearance loca-
tion in a random order. This random appearance changes the 
course of the instrument motion, thus creating multiple possibili-
ties of an instrument’s trajectory. To resolve this issue of versatili-
ty we will need more examples from the expert trainer surgeon. 
 
Of the two basic skill exercises peg transfer has more critical im-
portance of the path followed by the instrument as the trainee has 
multiple target locations to reach while avoiding more obstacles 
as compared to the grasping exercise. In peg transfer exercise our  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Figure 6: Standardized Peg Transfer Exercise Evaluation score. 

 
 
 
 
 

          Table 1 : Raw Peg Transfer Exercise Evaluation score 
 

Average of Expert 
Surgeon’s Rating  

(out of 10)  

Our algorithm’s ratings  

7  20.07  

6.25  16.42  

5.25  10.21  

5.25  10.04 

 
          Table 2 : Standardized Peg Transfer Exercise score 
 

Expert Surgeon’s Rat-
ing  

Our algorithm’s ratings  

0.89 0.88 

0.64 0.68 

0.21 0.21 

0.21 0.20 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Standardized Grasping Exercise Evaluation score.

  

Table 3: Raw Grasping Exercise Evaluation score 

 

Average of Expert 
Surgeon’s Rating  

(out of 10)  

Our algorithm’s ratings  

7  0.53  

6.5  0.42  

6  0.29  

5.75  0.23 

5.5  1.15  
 

Table 4 : Standardized score for Grasping Exercise 

 

Expert Surgeon’s Rat-
ing  

Our algorithm’s ratings  

0.92 0.51 

0.72 0.39 

0.40 0.27 

0.25 0.21 

0.14 0.95 
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algorithm’s evaluation pattern and the expert surgeons’ evaluation 
patterns matched more closely as compared to those in the grasp-
ing exercise. 
 

5. Conclusion & Future Work 
 
Based on our proposed method multiple trainer surgeons can 
teach the art of surgery to multiple students at the same time in a 
more convenient way. The intention of this paper is the introduc-
tion of a novel intelligent metric. There is definite room for fur-
ther validation and improvement in this metric by training it on a 
bigger and versatile data set. The proposed approach provides a 
suitable basis for instrument motion analysis of surgical trainees 
and could be utilized in future VR simulators for skill assessment. 
 
The future of surgery is non-invasive and robotic surgery. For an 
autonomous robotic surgery, we will need to train the autonomous 
or semi-autonomous equipment/device. A human surgeon gets 
trained by practising and benchmarking his trainer surgeon’s work 
along with some improvisation. Our work is just imposing this 
effort in a more automated way by minimizing the fatigue on the 
trainer surgeon’s part where as same efforts can be evolved into 
training a robot for autonomous or semi-autonomous surgery or 
other medical procedures.  
 
The results can be improved with the inclusion of more training 
examples. One possible future approach to explore is to analyze 
multiple locations at a time for trajectory analysis of the critical 
surgical manoeuvres. Too much of a dictation in this metric could 
prove to be a discouragement for the improvised learning of a 
trainee surgeon, To cater this we can include the allowance or less 
penalization of the trainee surgeon on performing in a way pre-
dicted by genetic algorithms. Other than the path, inclusion of 
angular movement can also help incorporating the fulcrum effect. 
This work is a sound proof that the incorporation of path based 
intelligent metric can help in automating the classical method of 
apprenticeship in a convenient way. 
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